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Motivation

Winglet
Boeing 737 MAX

Wing / Fuselage
Honda Jet

Nacelle
Boeing 787

Natural laminar flow (NLF) is presently limited to aircraft 
components with low sweep and Reynolds number, 

primarily due to crossflow instabilities
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CATNLF Concept Development
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NASA Laminar Flow Design Method
Crossflow Attenuated NLF (CATNLF) design method changes 
the shape of airfoils to obtain pressure distributions that delay 

transition by damping crossflow instabilities

Computational Study Wind Tunnel Test Flight Test

Goal: To develop technology
Reference: AIAA 2016-4326

Goal: To confirm computations
References: AIAA 2017-3058, 

AIAA 2019-3292

Goal: To advance technology
Reference: AIAA 2021-0173



Test Objectives:
1. Validate the CATNLF design methodology and analysis tools
2. Characterize the National Transonic Facility (NTF) laminar flow 

testing capabilities
3. Establish best practices for laminar flow wind tunnel testing
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Goal: To confirm computations
References: AIAA 2017-3058, 

AIAA 2019-3292

Wind Tunnel Test
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CATNLF Transition Delay Method
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CP gradient for controlling
Tollmien-Schlichting (TS)

Rapid acceleration for 
crossflow (CF) attenuation

Predicted extent 
of laminar flow



• Design Module: CDISC
Applies knowledge-based design rules to change geometry to match 
target pressure distributions

• Flow Solver: USM3D
Solves Navier-Stokes equations on unstructured tetrahedral grid

• Boundary Layer Profile Solver: BLSTA3D
Calculates boundary layer velocity and temperature profiles based on 
chordwise pressure distribution assuming conical flow

• Boundary Layer Stability Analysis: LASTRAC
Stability analysis and transition prediction using eN Linear Stability 
Theory method with compressibility effects

9

CATNLF Analysis Tools
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Model Configuration

Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Model is a variant of the Common Research Model (CRM) referred to as 

the Common Research Model with Natural Laminar Flow (CRM-NLF)
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12
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Pressure Distributions
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Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Key features of CATNLF method are obtained in CRM-NLF design

CRM
CRM-NLF

Station 6 Station 12
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Airfoil Geometry

Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Largest change needed near leading edge on inboard airfoils

CRM
CRM-NLF

Station 6 Station 12
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Crossflow Stability Analysis
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Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Significant damping of CF near leading edge on CRM-NLF

CRM
CRM-NLF
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Tollmien-Schlichting Stability Analysis
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Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Gradual growth of TS to desired transition location on CRM-NLF

CRM
CRM-NLF
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Model Design Results: Attachment Line Control

Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Attachment line contamination is addressed with reduced sweep inboard
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Model Design Results: Design Transition Front

Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Laminar flow on 56% of wing at design condition (critical N-factor = 10)
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Model Design Results: Tunnel Transition Front
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Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Environment (represented by critical N-factor) effects extent of laminar flow

Flight (Critical N-factor = 10)
Tunnel (Critical N-factor = 6)
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Model Design Results: Tunnel Transition Front

Design Conditions: Mach = 0.85, ReMAC = 30x106, CL = 0.5
Reducing ReMAC in wind tunnel environment will extend laminar flow
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Tunnel (Critical N-factor = 6)
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Facility Description

• Test completed in October 2018 in the National Transonic Facility (NTF) 
at the NASA Langley Research Center

• NTF is a pressurized cryogenic closed-circuit, continuous-flow, fan-
driven wind tunnel

• Motivation for testing in the NTF:
– Flight Reynolds numbers for relevant laminar flow data
– Semispan testing capability for reducing unit Reynolds numbers
– Acceptably low turbulence levels for laminar flow testing
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Instrumentation and Measurements

• 5.2% scale semispan model
– Semispan length = 60.2 inches
– Reference chord  = 14.3 inches

• Data acquired:
– Surface pressure
– Transition visualization
– Force and moment
– Model deformation
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Mach α (deg.) TT (°F) q¥ (psfa) ReMAC (million)

0.86 1.5 to 3.0

+40 1180 to 1780 10.0 to 15.0

-50 1120 to 1800 12.5 to 20.0

-150 1200 to 1800 20.0 to 30.0

Primary Test Conditions
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Surface Pressure Data
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• Surface pressure data essential for CATNLF method evaluation
• Wing has 230 pressure ports arranged in 9 chordwise rows
• Leading-edge pressure ports only on 4 rows to avoid loss of laminar 

flow at every row
A

B

C
D

E
F

G
H

I
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Surface Pressure Data
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Tunnel Conditions: M = 0.86, ReMAC = 15x106, 𝜶 = 2.0 deg.
CATNLF pressure architecture obtained on the wind tunnel model

Row C
Row F

AIAA Transition Modeling Workshop



Transition Visualization Data

• Temperature Sensitive Paint (TSP) used for transition visualization
• Two methods used to introduce the required TSP temperature gradient

– Rapid Liquid Nitrogen Injection: Reduces the freestream temperature
– Carbon-Based Heating Layer: Increases the model temperature [Ref. 1]

• Average surface roughness measured to be ~1 µin prior to testing 
• Surface quality maintained during testing by frequently sanding and 

polishing the wing
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Transition Visualization Data

TSP images show regions of laminar flow on the wing upper surface
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Laminar = Light

Turbulent = Dark
Bypass Transition 

(Turbulent Wedges)

Natural Transition 
(Transition Front)
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TSP Images: Reynolds Number Sweep

Tunnel Conditions: M = 0.86, 𝜶 = 1.5 deg.
Turbulent wedges at high Reynolds numbers make analysis challenging
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ReMAC = 10.0 million ReMAC = 12.5 million ReMAC = 15.0 million

ReMAC = 17.5 million ReMAC = 20.0 million ReMAC = 22.5 million
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TSP Images: Alpha Sweep
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Tunnel Conditions: M = 0.86, ReMAC = 15x106

Laminar flow maintained across alpha sweep

𝜶 = 1.5 deg. 𝜶 = 2.0 deg.

𝜶 = 2.5 deg. 𝜶 = 3.0 deg.
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Bypass Transition During Repeat Points
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Tunnel Conditions: M = 0.86, ReMAC = 15x106, 𝜶 = 2.5 deg.
Repeat points vital to ensure best possible image was acquired

Run 80, Point 1788 Run 92, Point 1896

Run 172, Point 2525 Run 181, Point 2563
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Attachment Line Bypass Transition
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Tunnel Conditions: M = 0.86, ReMAC = 17.5x106, 𝜶 = 2.0 deg.
Repeat images help determine if leading-edge transition is due to 

attachment line bypass transition

Full-Span 
Laminar Flow

Leading-Edge 
Transition
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Attachment Line Bypass Transition
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Tunnel Conditions: M = 0.86, ReMAC = 17.5x106, 𝜶 = 2.0 deg.
Examples of attachment line bypass transition confirm Poll’s criteria
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Transition Analysis: TS Transition
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 3.0 deg.
Experimental transition location correlated to computational N-factor 

growth suggests TS transition

Row D
(x/c)t ≈ 0.30

(x/c)t ≈ 0.30
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Transition Analysis: Midchord CF Transition
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Tunnel Conditions: M = 0.86, ReMAC = 22.5x106, 𝜶 = 1.5 deg.
Some images with significant bypass transition can still be used for 

transition mechanism assessment

Row H
(x/c)t > 0.25

(x/c)t > 0.25
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Transition Analysis Limited by Bypass

35

Tunnel Conditions: M = 0.86, ReMAC = 17.5x106, 𝜶 = 1.5 deg.
N-factor growth often varies along the chord such that the natural transition 

location is required to know which mechanism is critical

(x/c)t > 0.20

CF 
dominant

TS 
dominant

AIAA Transition Modeling Workshop

Row B
(x/c)t > 0.20
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Challenges with Analysis: Unsteady Pressures
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Some stability analysis calculations terminated ahead of the 

experimental transition location
Row G
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Challenges with Analysis: Unsteady Pressures
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Experimental transition location occurs aft of the shock

Row G

Stability analysis 
terminates

(x/c)t = 0.50
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Challenges with Analysis: Unsteady Pressures

Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Experimental frame data showed significant variation in pressure 

readings over the midchord region
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Row G
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Challenges with Analysis: Unsteady Pressures
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Significant variation in pressure readings can be explained by 

pressure distributions from individual frames
Row G
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Challenges with Analysis: Unsteady Pressures
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Significant variation in pressure readings can be explained by 

pressure distributions from individual frames
Row G
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Challenges with Analysis: Unsteady Pressures
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Tunnel Conditions: M = 0.86, ReMAC = 15.0x106, 𝜶 = 2.5 deg.
Pressure distributions from individual frames show shock further aft 

and provide explanation for aft transition location
Row G

(x/c)t = 0.50
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Concluding Remarks

Contact:    michelle.n.lynde@nasa.gov

• A test of the CRM-NLF in the NTF was completed in October 2018

• CRM-NLF data used in the 2021 AIAA Transition Modeling Workshop to 
help promote computational tool advancements

• Challenges with laminar flow data acquisition in a wind tunnel limited 
high Reynolds number data analysis

• Extents of laminar flow on CRM-NLF nearly double those seen in past 
NLF experiments at comparable sweep angles

• Positive results from CRM-NLF test has led to CATNLF flight test to 
evaluate transition delay method in flight environment 

• Design of CATNLF flight test article completed [Ref: AIAA 2021-0173]
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